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ABSTRACT  

Over the past 50 years (1970-2020) the world's population has risen by an average of 1.49% per year so that 

in 2020 it reached 7.79 billion people. This increase automatically increases food needs. While to this day 

there are still over 820 million undernourished people. Food legumes have enormous potential in supporting 

food security because they are rich in nutrients, including high energy, protein, carbohydrate, fiber, and other 

nutrients. Even among them, like chickpeas have higher energy content than some major cereal crops. Food 

legumes production continues to increase from year to year. Compared to three decades ago, soybean annual 

production more than tripled with production in 2017 reaching 352.2 million tons, as well as pulses that 

increased more than 35 million tons with production in 2017 reaching 96 million tons. These improvements 

are not only supported by field expansion, but also the impact of technological improvements which have 

effect on increasing yield. This review describes the trends in increasing production and yield of food legumes, 

as well as the progress of breeding technologies in order to increase diversities have impact on increasing the 

yields and adaptation against the environment. These explanations are discussed in each food legume species. 
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INTRODUCTION  

Over the past 50 years, from 1970 to 2020, 

the average world population increased by 1.49% 

per year, from 3.70 billion in 1970 to 7.79 billion 

in 2020 (UN, 2019). An ever-increasing population 

automatically increases food needs. But in fact, 

there is still food insecurity. This is shown by more 

than 820 million undernourished people to this day. 

It is targeted that by 2030 food insecurity can be 

overcome but the challenges faced are increasingly 

severe (FAO 2018). These constraints are most 

often addressed to the declining environmental 

potential (Godfray et al. 2010; Foley et al. 2011) 

such as climate change which has serious impacts 

on food security (Campbell et al. 2016) through 

impacts on crop yields, impacts on livestock and 

fisheries no less serious (Lobell et al. 2011; 

Creighton et al. 2015; Herrero et al. 2015). Crop 

diversification is also very necessary to support the 

sustainability of food production. Three types of 

cereals, namely corn, wheat, and rice, dominate the 
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agricultural area by 40% (Tilman et al. 2011; 

Stampt et al. 2012). Optimization of legume crops 

is projected to be a solution that supports food 

security. With the 'nutritious seeds for sustainable 

future' banner, the UN declared 2016 as the 

International Year of Pulse (Foyer et al. 2016). 

Food legume is able to be the main staple 

food because of its high energy, protein, and 

carbohydrate content. Some of them even have 

higher energy content than cereal crops, for 

example, chickpeas that have higher energy 

content than corn, barley, white and brown rice 

(USDA National Nutrient Database 2016). In 

addition to its high nutritional content, food legume 

crops are able to correlate with fixing bacteria. This 

relationship benefits both the legume as host and 

fixing-bacteria (Oldroyd 2013). Nitrogen fixation 

has an ecological and economic impact due to the 

fact that the availability of N fixed is the factor that 

most often limits agricultural production 

worldwide (Smil 2004). With a variety of potential 

legumes that impact food security, production and 

yield of legumes over the past 50 years have 

increased, although they have not exceeded the 

production of cereal crops (Foyer et al. 2016). Both 

extensification and intensification continue to be 

carried out from year to year to increase food 

legume production (FAOSTAT 2019). Breeding 

technology in the context of intensification 

continues to be done in order to increase the yield 

of food legume crops. Such as the use of genomic-

assisted breeding that has the possibility to unlock 

valuable genes such as heat and drought tolerance 

in wild species which are then transferred 

efficiently to cultivated species (Varshney et al. 

2015; Varshney 2016). Likewise, mutations that 

have been proven to have supported the increase in 

yields (Ahloowalia et al. 2004). In this review, it is 

explained about the contribution of food legume in 

supplying world food needs as well as reviewing 

the progress of breeding technology in food legume 

crops that support the increase in diversity and 

yield described in each major food legume. 

HEALTH AND NUTRITION OF FOOD LEGUMES 

Based on the definitions published by FAO in 

1994, variations in the type of legumes can be 

divided into four categories: pulses, legumes used 

for oil extraction, pulses used for forages, and 

legumes that are harvested fresh or before they 

have dried. Pulses are harvested solely for dry 

grains, for example, chickpeas, beans (dry), peas 

(dry), and lentils. Legumes for oil extraction such 

as soybeans and peanuts. Legumes used for forages 

such as clover and alfalfa. Freshly harvested 

legumes before drying are used for green food and 

are classified as vegetable crops, for example, 

green/fresh beans and peas. 

Legume is the highest source of protein 

from the crop with a percentage of 18-36% 

(uncooked). The amount of energy produced by 

pulses is also relatively high, averaging more than 

100 kcal per 100 grams cooked. Even from 100 

grams of cooked chickpeas, the energy content 

reaches 160 kcal. Complete data on the 

composition of energy, protein, carbohydrates, and 

fiber undercooked conditions can be seen in Table 

1, which presents both pulse and cereal as a 

comparison (USDA National Nutrient Database 

2016). The clustering of 22 food legumes has been 

carried out. There are three groups of clusters, 

cluster 1 represents legume crops with a moderate 

amount of protein, high carbohydrate, low dietary 

fiber and fat. Cluster 2 represents a high amount of 

protein, moderate carbohydrates and fat, and high 

dietary fiber. Cluster 3 represents low protein and 

carbohydrate, moderate dietary fiber, and high fat 

(table 2) (Maphosa and Jideani 2017). In addition 

to being high in energy, high in protein, 

carbohydrates, and fiber, pulses are also rich in 

vitamins, minerals, and rich in antioxidant 

compounds including polyphenols, flavonoids, 

phenolic acids, and have a low glycemic index 

(Kouris and Belski, 2016; Hall et al. 2017). Unlike 

most types of food crops, which are limited in 

amount, the protein content in legumes is actually 

rich in amino acid lysine and sulfur amino acids 

such as methionine (Bressani et al. 1984). Legumes 

contribute to reducing the risk of mortality because 

it has the benefit of preventing several chronic 

diseases and risk factors such as cancer, diabetes, 

obesity, cardiovascular disease, and gut health 

(Kushi et al. 1999). In addition to its use for food, 
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grain legumes such as cowpeas are also potentially 

used in the pharmaceutical, cosmetic and even 

textile sectors because of their therapeutic 

properties (Singh and Basu 2012). 

 

 

Table 1. Composition of energy, protein, carbohydrate, and fiber content in several pulses and cereals (100g 

cooked) 

Category Crop 
Nutrient content 

Energy (kcal) Protein (g) Carbohydrat (g) Fiber (g) 

Pulse 

Bean 

Chickpea 

Pea 

Lentil 

126 

164 

120 

116 

8.86 

8.86 

7.55 

9.02 

22.48 

27.42 

22.18 

20.13 

7.41 

7.6 

7.5 

7.9 

Cereal 

Corn 

Rice (white) 

Rice (brown) 

Barley 

96 

130 

123 

123 

3.41 

2.69 

2.74 

2.26 

20.98 

28.17 

25.58 

28.22 

2.4 

0.4 

1.6 

3.8 

 

Table 2. Three cluster groups based on the nutritional content of 22 legumes using K-means cluster 

 

Cluster Legumes 
Nutritional content (%) 

Carbohydrate Protein Dietary fiber Fat 

1 Chickpea, lima bean, adzuki bean, 

green gram, kidney bean, cowpea, 

mung bean, pinto, black gram, 

pigeon pea, broad bean, African yam 

bean, hyacinth, white velvet bean, 

sword bean, black velvet bean, 

bambara groundnut, lentil 

63.78 25.44 9.32 2.58 

2 Soybean, sweet lupin, groundnut, 

bitter lupin, sword bean 

37.10 36.09 17.72 14.11 

3 Groundnut, hyacinth 19.33 18.73 13.28 55.03 

 

IMPROVEMENT TECHNOLOGIES ON FOOD LEGUMES

 Authors retrieve the latest data from 

FAOSTAT for total trends in production and 

harvested areas of pulses and soybeans in the world 

presented in Figure 1. Pulses production is 

obtained by combining crop production that is 

included in the category of pulses including beans 

(dry), broad beans, peas (dry), chickpeas, cowpeas, 

pigeon peas, lentils, bambara beans, vetches, 

lupins, and pulses nes (FAO 1994).  

Production trends were obtained from 

1990 to 2017. Both pulses and soybeans, 

production trends increased. Certainly, an increase 

in field area is a big support in increasing 

production. Pulses production in 1990 was 59.2 

million tons produced from the 68.8 million ha 

harvested area, in 2017 pulses produced 96 million 

tons from the harvested area of 95.2 million ha. For 

soybeans, in 1990 a total production of 108.5 

million tons was produced from the harvested area 

of 5.2 million ha, in 2017 soybean production was 

352.2 million tons from the harvested area of 123.6 

million ha. Intensification also supports increased 

production. Although the yields fluctuate annually, 

overall from 1990 to 2017 both pulses and soybean 
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yields have increased. The average increase in 

pulses and soybean yields per year was 0.67% and 

1.68% respectively (Table 3) (FAOSTAT 2019).  

Grain legume is a vital part of the response 

at the 2009 Declaration of the World Summit on 

Food Security with the need for an increase in 

agricultural output of 70% in 2050 as a step to face 

an increase in population, while optimizing the 

sustainable use of genetic sources for adaptation to 

climate change (Foyer et al. 2016). The relatively 

low yield of pulses is an important part of the 

production challenge, which is caused by the low 

number of high-yielding varieties, poorly adapted 

varieties, biotic and abiotic stress (Bergvinson; 

Sabbaghpour 2006). For this reason, high-yielding 

and biotic/abiotic stress tolerance varieties need to 

be developed (Amanullah 2016). The production 

trends of each crop and the progress of the breeding 

technology are discussed in detail based on the type 

of each species of grain legumes. 

 

 

Table 3. Production and yields in 2017 and the average percentage increase in annual yields from 1990 to 

2017 of several major food legumes 

Food legumes 
Production in 2017 

(million tons) 
Yield in 2017 (kg ha-1) 

The average increase in annual 

yield from 1990 to 2017 (%) 

Beans 

Broad beans 

Peas 

Chickpeas 

Cowpeas 

Pigeon peas 

Lentils 

Bambara beans 

Vetches 

Lupins 

Soybeans 

31.41 

4.84 

16.21 

14.78 

7.41 

6.81 

7.59 

0.18 

0.92 

1.61 

352.64 

861 

1,964 

1,991 

1,015 

589 

969 

1,153 

715 

1,644 

1,730 

2,854 

1.1 

1.18 

0.61 

1.78 

2.99 

1.79 

1.65 

1.74 

1.95 

5.33 

1.68 

a.

 
 

b.

 
 

c.
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Figure 1. Production of pulses and soybean 

throughout the world from 1990 to 2017. Total 

production (tons) and harvested area (ha) in units 

of million, pulses (a), soybean (b). Figure c and d 

are the trends of the yield of pulses (c) and soybean 

(d) from 1990 to 2017.  

 

Beans  

 When viewed from its production, bean is 

the most important pulse crop in the world today. 

Bean production in 2017 of 31.4 million tons 

worldwide was produced from a harvested area of 

36.5 million ha. Compared to three decades ago, 

bean production clearly surged by more than 10 

million tons. For example, the 1990 production of 

17.5 million tons produced from 26.5 million ha 

(FAOSTAT 2019). 

 A significant increase in production, apart 

from the expansion of the field, is inseparable from 

the continuous improvement technology in 

increasing yield. In common beans, breeding 

objects are addressed in diseases, abiotic stress, 

agronomic, quality, and environment (Assefa et al. 

2019). In the context of markers development, 

from the Pulse Crop Database so far more than 500 

quantitative trait loci (QTL) in the bean have been 

identified (Pulse Crop Database 2019). Among 

them reported stable yield QTL on the Pv04 

chromosome. Still in the same study, it was 

subsequently identified on the Pv01 and Pv08 

chromosomes as the most stable QTL for maturity 

traits (Diaz et al. 2018). 

 Some of the main biotic constraints on 

common beans include anthracnose 

(Colletotrichum lindemuthianum), angular leaf 

spots (Phaeoisariopsis griseola), common 

bacterial blight, bean common mosaic virus, and 

bean golden mosaic virus (Beebe and Corrales 

1991; Duc et al. 2015; Miklas et al. 2017). 

Summary of the resistance gene in several common 

bean diseases is reviewed in table 4 (Assefa et al. 

2019). Drought and heat stress are major abiotic 

constraints in common bean (Rao 2014; De Ron et 

al. 2016). To add the insight of the adaptation of 

common bean to the environment, it is necessary to 

know the physiological character. For the analysis 

of abiotic stress, in general, the physiological 

characters evaluated include shoot structure, grain 

yield, water potential, osmotic adjustment, and gas 

exchange (Lanna et al. 2018). Analysis of traits in 

drought stress is directed at yield components, 

biomass, partitioning, phenology, and water 

relations (Ramirez-Vallejo and Kelly 1998). 

Schneider et al. (1997) identified QTLs using 

Random Amplified Polymorphic DNA (RAPD) 

markers to be drought. By using five RAPD 

markers, under drought conditions improve yield 

by 11% while under normal conditions improve 

yield by 8% (Schneider et al. 1997). The other 

identification of QTL in drought was reported by 

Trapp et al. (2015) which detects Pv01 and Pv02 as 

two major QTLs for seed yield on drought 

tolerance and several abiotic stress conditions 

(Trapp et al. 2015).  

 

 

Table 4. Summary of several resistance genes against biotic constraints in common bean 

Constraint Resistance gene Reference 

Bacteria 

 Bacterial brown spot 

(Pseudomonas) 

 Common blight 

(Xanthomonas) 

 

 LG02 

 

 QTL: BC420 (Pv06), SU91 

(Pv08), Xa11.40V1 

 

 Jung et al. 2003; Muedi et al. 

2015 

 Viteri et al. 2015; Miklas et al. 

2017 

Fungi 

 Angular leaf spot 

(Phaeoisariopsis) 

 Anthracnose 

(Colletotrichum) 

 Fusarium 

 

 

 QTL: Pv04, Pv10 (ALS10.1) 

Phg1, Phg2 

 QTL: Pv01, Pv04, Pv10, Co-1, 

Co-2 

 QTL (FRR3.1km) (Pv03), LGs 

B2 and B3 

 

 Oblessuc et al. 2012; 2015; 

Keller et al. 2015 

 Zuiderveen et al. 2016 

 

 Roman-Aviles and Kelly 2005 

 Hanson et al. 1993 
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 Leafspot (Ascochyta) 

 

 Rust (Uromyces) 

 Quantitative (P. polyanthus) 

 KASP SS68 marker associated 

with Pv11 

 

 Hanson et al. 1993; Hurtado-

Gonzales 2017 

Insects 

 Bean stem maggot 

(Ophiomyia phaseoli Tryon) 

 Bean pod weevil (Apion 

godmani) 

 

 Leaf hopper (Empoasca 

fabae, E. kraemeri) 

 

 Qualitative and quantitative 

 

 Quantitative: Chr2, (b01) Chr3 

(b08), Chr4 (b07), Chr6 (b11) 

 QTL: Pv01, Pv02, Pv03, Pv06, 

Pv07, Pv08, Pv09 

 

 Miklas et al. 2006 

 

 

 Blair et al. 2006b 

 

 

 Murray et al. 2004; Brisco 

2012 

Viruses 

 Mosaic virus and mosaic 

necrosis virus 

 Golden yellow mosaic 

 

 Qualitative: bc-1, bc-2, bc-3 

 Qualitative, quantitative, Bgm-

1, RNAi 

 

 Johnson et al. 1997; 

Strausbaugh et al. 1999 

 Blair et al. 2007 

Broad beans 

 Broad beans (Vicia faba L.) named also 

faba bean or horse bean have higher protein content 

than other common food legumes (Griffiths and 

Lawes 1978; Burstin et al. 2011). From 1990 to 

2017 broad beans yield increased by an average of 

1.18% per year. In 2017 there was 2.5 million ha of 

the harvested area of broad bean area with a 

production of 4.8 million tons (FAOSTAT 2019). 

 High genetic diversity among broad beans 

is useful for increasing yield potential in plants. 

This potential is used to improve plant adaptation 

to the environment, biotic stress, and abiotic stress. 

Biotic stress includes foliar diseases, pests, insects, 

viruses, and parasitic diseases. Major foliar 

diseases include ascochyta blight (Ascochyta 

fabae), chocolate spot (Botrytis fabae), gall disease 

(Olpidium viciae Gusano), and rust (Uromyces 

viciae-fabae), (Maalouf et al. 2019). Insect pests 

include cowpea aphid (Aphis cracivora Koch), 

black bean aphid (A. fabae Scopoll), and sitona 

weevil (Sitona lineatus L.) (Mwanauta et al. 2015). 

For the virus category, faba bean necrotic yellow 

virus (FBNYV) disease causes up to 90% loss of 

faba bean in Egypt (Kumari and Makkouk 2007). 

Orobanche crenata Forsk. is parasitic weed as a 

serious constraint for legumes crop in the 

Mediterranean area. Case in Morocco reported 

severe level O. crenata infestation in many faba 

bean fields (Briache et al. 2019). ICARDA has 

identified the first effective source of resistance for 

ascocyhta blight and chocolate spots (Robertson 

1984; Hanounik and Robertson 1989). Kaur et al. 

(2014) have reported the identification of QTLs for 

ascochyta blight resistance. ILB 4726, ILB 938, 

and BPL 710 are lines found in ICARDA that are 

high-level resistant to chocolate spots (Beyene et 

al. 2018). The results of the study in Morocco, Giza 

843 genotype (selected in Egypt that is resistant to 

O. crenata) was chosen as a source of genotyping 

for resistant to O. crenata so that it was introduced 

as Maroccan faba bean breeding program (Briache 

et al. 2019), while the Tunisian line experiment 

XBJ90.03-16-1-1-1 produced by the National 

Institute de la Recherce Agronomique de Tunisie 

(INRAT) has a high resistance to O. crenata 

(Abbes et al. 2007). 

 Terminal heat stress can significantly 

reduce broad bean yield and component yields 

(Abdelmula and Abuanja 2007). Likewise, 

terminal drought stress is an important constraint 

of broad bean production in semi-arid areas under 

rainfall conditions. Abdelmula et al. (1999) have 

reported genetic variations in the response of faba 

bean to drought. In North America and North 

Europe, frost tolerance is an important breeding 

focus to improve yield stability (Landry et al. 

2016). In Ethiopia waterlogging and soil acidity are 

common constraints of broad bean production 

(Keneni et al. 2010). Some of the abiotic stress-

tolerant genotypes are following in table 5. 
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Table 5. The genotypes of Vicia faba that are tolerant to abiotic stress 

Genotypes Type of abiotic stress References 

Zafar 1 

C5 

Hara 

CS20-DK and NC-58 

Boxer 

FAB7024 

NGB8639 

S_145, S_004, S_081, S_151, S_299 

Acc 1487/7, Acc 1512/2, Fiesta VF 

Drought stress 

Drought stress 

Drought stress 

Drought stress 

Heat stress 

Cold stress 

Cold stress 

Frost stress 

Salt stress 

Siddiqui et al. 2015 

Siddiqui et al. 2015 

Abid et al. 2017 

Girma and Haile 2014 

Zhou et al. 2018 

Zhou et al. 2018 

Zhou et al. 2018 

Sallam et al. 2017 

Tavakkoli et al. 2012 

 

Peas  

 Pea (Pisum sativum L.) is one of the oldest 

domesticated crops included in the annual cool-

season legume. Pea is a high protein food source, 

dry seed pea contains 22-25% protein (Tayeh et al. 

2015). The latest data, in 2017 the harvested area 

of pea reaches 8.1 million ha with a total 

production of 16.2 million tons worldwide. In the 

period 1990 to 2017 pea yield increased an average 

of 0.61% per year (FAOSTAT 2019). 

 Pea yield increase is focused on biotic and 

abiotic stress. Fungal diseases are major constraints 

for biotic stress, followed by attacks of insects, 

viruses, and plant parasites. Drought and heat stress 

are the main abiotic stresses in the flowering phase. 

Early season flooding, frost, and salinity stress are 

important whose impacts vary in each phase of 

growth (Tayeh et al. 2015). Field pea rust caused 

by the pathogen Uromyces spp. is a pea disease that 

is the main focus in North and South America, 

Europe, Australia, China, India, and New Zealand 

(EPPO 2012). Recently, the results of research in 

India that IPF 2014-16, KPMR 936, and IPF 2014-

13 are ideal genotypes and are recommended to be 

released and exploited as field pea rust resistance 

(Das et al. 2019). Through backcrossing 

transferred to cultivated peas, the secondary gene 

pool (P. fulvum) was identified to be resistant to 

pea weevil (Bruchus pisorum L.) (Clement et al. 

2002, 2009; Aryamanesh et al. 2012). Has been 

developed and deployed in the north-west USA and 

Europe cultivated adapted peas for winter showing 

which have a longer growing season, earlier 

maturity to avoid late-season drought and heat 

stress, and have higher biomass production, thus 

potentially giving better yields (Hanocq et al. 

2009). Pea semi-leafless cultivars with upright 

habit have a cooler canopy and seed yield greater 

than normal leafed vining cultivars in heat stress 

conditions (Tafesse et al. 2019). To support 

breeding in frost tolerance, QTL analysis of frost 

damage has been carried out by Klein et al. (2014). 

QTL has also been identified in pea to increase 

salinity tolerance with SNP markers. This is an 

important set of tools for marker-assisted selection 

(MAS) to increase resistance to this abiotic stress 

(Leonforte et al. 2013). The use of landrace 

accessions has been identified to increase stress 

tolerance including salinity (Leonforte et al. 2013), 

iron deficiency (Kabir et al. 2012), boron toxicity 

(Bagheri et al. 1994), and heat tolerance during 

flowering (Petkova et al. 2009). 

  

Chickpeas 

 The average yield of chickpeas in the 

period 1990 to 2017 was 0.82 ton ha-1. In 1990 and 

2017 the total harvested area of chickpea in the 

world was 9.9 million ha with a production of 6.8 

million tons, and 14.6 million ha with a production 

of 14.8 million tons respectively. During this 

period the chickpea yield increased with an average 

percentage of 1.78% per year. (FAOSTAT 2019). 

As an effort to characterize allelic variation, to 

date, more than 1200 QTLs have been identified in 

the Cicer arietinum species (Pulse Crop Database 

2019). 

 Major biotic constraints on chickpeas 

including ascochyta blight, botrytis gray mold, 

crenata broomrape, plant-parasitic nematodes, and 
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fusarium wilt. Ascochyta blight (AB) is a 

necrotrophic fungus caused by Ascochyta rabiei 

(Pass.) (Kimurto et al. 2013). AB is the most 

important yield-limiting factor for chickpeas. 

Cases in Canada and Australia AB have the 

potential to affect 95% of chickpea yield (Knight 

and Siddique 2002; Gan et al. 2006). Botrytis gray 

mold (BGM) due to Botrytis cinerea Press. Ex. Fr. 

(Pande et al. 2006a). BGM can damage chickpeas 

which result in loss of all yields in years of high 

humidity and extensive winter rains (Reddy et al. 

1988; Pande et al. 2002). Nematodes that cause 

damage to chickpea plants focus on three types of 

nematodes, namely: cyst nematode (Heterodera 

ciceri), root-knot nematodes (Meloidogyne 

artiella, M. javanica, M. incognita), and root-

lesion nematode (Prathylencus thornei) (Zwart et 

al. 2019). Globally, plant-parasitic nematodes 

attack results in a 14% loss in chickpea yield 

(Sasser and Freckman 1987). The pathogen that 

causes fusarium wilt in chickpeas is Fusarium 

oxyporum f. sp. Ciceris Schlechtend: Fr. fSp. 

Ciceris (Padwick) T. Matuo and K. Sato (Jimenez-

Fernandez et al. 2006; Haware MP 1990). Each 

chickpea genotype has varying sensitivity to heat 

stress. Variation in yield loss of 10-15% for each 

degree increase in temperature above the optimum 

temperature (Upadhaya et al. 2011). Generally, 

heat stress decreases ultimately seed weight and 

grain filling rate (Munier-Jolain and Ney 1998). 

 

Cowpeas 

 Cowpea (Vigna unguiculata L. Walp.) is a 

warm-season food legume that is very important in 

the Africa, Americas, India, and other semi-arid 

regions (Timko and Singh 2008). Compared to 

three decades ago, current cowpea production 

worldwide has more than tripled. In 1990 cowpea 

production was 2.1 million tons, in 2017 7.4 

million tons. During this period the average yield 

increase was 3% per year (FAOSTAT 2019).

 Striga gesnerioides (Willd) Vatke is the 

main parasitic weed that attacks cowpeas in West 

and Central Africa which causes a substantial yield 

reduction. As an effort to control the biotic 

constraint, research in Nigeria, analysis of 

genotype x environment (GGE) biplots identified 

UAM09 1046-6-1 and UAM09 1046-6-2 suggest 

as ideal genotypes that have a good adaptation to S. 

gesnerioides relatively (Omoigui et al. 2017). 

Several improving for other biotic stress-resistant, 

including flower bud thrips (Megalurothrips 

sjostedti Trybom) (Togola et al. 2019), brown 

blotch disease due to the pathogen Colletotrichum 

truncathum (Andrus) (Adebitan 1984; Adetumbi et 

al. 2019). Studies on European cowpea landraces 

for novel foods and agricultural system 

sustainability, two accessions from Spain, 

BGE038477 and BGE038478, and two from 

Portugal, Cp5553 and Vg60, are ready to be 

included in the breeding cowpea program 

(Carvalho et al. 2017). Another study of cowpea 

landraces by Carvalho et al. (2019) through 

genotype screening of cowpea worldwide to 

drought-tolerant at the germination stage. The 

results of the study showed six landrace genotypes 

and one cultivated genotype from the entire 

collections was identified as tolerant to drought 

stress at the germination stage. These genotypes 

are the best suitable parents used for further 

breeding programs (Carvalho et al. 2019). Some 

breeding to improve drought tolerance is directed 

to a diallel analysis (Rodrigues et al. 2018) and 

genetic architecture for grain yield, biomass, and 

delayed senescence (Muchero et al. 2013). Hall 

(2004) based on the results of their studies of 

cowpea breeding to heat stress reviewed that 

breeding for heat stress adaptation directed on crop 

phenology, heat tolerance during reproductive 

development, and interactions between heat-

tolerant during reproductive development and 

other traits. 

 

Pigeon peas  

 In order to improve the nutritional quality 

of pigeon pea (Cajanus cajan L.), research in India 

analyzed the content of moisture, protein, fat, 

carbohydrates, and limiting amino acids 

tryptophan and methionine. The genotypes of PT-

012-9, PT-012-16, and PT 012-23 have good 

results for breeding to improve nutritional quality 

(Kachare et al. 2018). For improve resistance to 

biotic and abiotic constraints, Singh et al. (2016) 

reported genetics of the Fusarium wilt (FW) 

resistance disease associated with simple sequence 

repeat (SSR) markers. Four resistant FW genotypes 
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were used, namely BDN-2001-9, BDN-2004-1, 

BWR-133, and IPA-234. The results of the study 

reported ASSR-1, ASSR-23, and ASSR-148 

markers will be used for the FW-resistant pigeon 

pea-resistant parental screening program. The use 

of pigeon pea crop wild relatives (CWR) is 

confirmed to have resistance to biotic and abiotic 

stress so that it can be used for breeding programs. 

C. acutifolius is resistant to pod borer 

(Mallikarjuna et al. 2007). C. platycarpus is 

resistant to Phytophtora blight (Saxena et al. 2005). 

C. scarabaeoides is resistant to pod borer and 

sterility mosaic disease (Mallikarjuna et al. 2007, 

2011). Tolerance gene has been identified for 

waterlogging in pigeon pea. Segregation pattern 

was observed in two crosses derived from the 

tolerant parent (ICPL 84023) and two susceptible 

parents (DA 11 and MA 98 PTH 1). Based on that 

study shown that waterlogging tolerance is 

influenced by a single gene and as a dominant trait 

(Sarode et al. 2007). 

 

Lentils 

 The foliar disease is the most serious biotic 

stress for lentils (Lens culinaris Medik.). In all the 

growing regions of the world, Ascochyta blight 

caused by Ascochyta lentil is a problem with 

various levels (Ahmed and Morral 1996). Many 

Asccochyta blight resistant cultivars/lines lentils 

have been released in various countries. Some of 

these are presented in table 7 (Ye et al. 2002). 

Abiotic stresses that affect lentils include heat, 

cold, drought, nutrient deficiency, nutrient toxicity, 

and salinity. Of these stresses, heat and drought are 

the most important stresses worldwide (Turner et 

al. 2001). Previous researches have produced heat-

tolerant genotypes including IG2507, IG3263, 

IG3745, IG4258, and FLIP2009. The study was 

conducted to compare the five heat-tolerant 

genotypes with heat-sensitive genotypes (IG2821, 

IG2849, IG4242, IG3973, and IG3964). The heat-

tolerant genotype has higher pollen germination, 

pollen viability, stigmatic function, ovular 

viability, pod set, and growth of pollen tube 

through the style. Heat-tolerant genotypes result in 

less damage to membranes, cellular oxidizing 

abilities, and lower photosynthetic functions. 

Temperatures up to 40/30oC  is able to tolerated by 

heat-tolerant genotype to produce fewer pods (Sita 

et al. 2017). For improved tolerance to drought in 

lentils, there are two traits that are important for 

research: faster stomatal closure under soil drying, 

and limitation of transpiration under high 

atmospheric vapor pressure deficits (Ghanem et al. 

2017).  

In order to improve lentils, desirable 

mutants have been identified in quantitative traits 

in lentils at early M2 generation (Tabti et al. 2018). 

Induced mutation analysis is also carried out with 

molecular characterization and biochemical of high 

yielding lentils mutant lines. The biochemical and 

molecular profiles of induced mutant lines can 

form the basis of future conservation and 

utilization strategies to broaden the genetic base of 

current breeding populations (Laskar et al. 2018). 

Babayeva et al. (2018) identified genetic 

relationships among introduced lentil germplasm 

using agronomic traits and inter sequence repeat 

(ISSR). The ISSR dendrogram is able to clearly 

distinguish all lentil accessions. (Babayeva et al. 

2018). QTLs have been identified for agronomic 

traits in lentils using association mapping by 

Kumar et al. (2018). The future lentil breeding 

program can use these markers as functional 

markers. 

 

Table 6. Ascochyta blight-resistant cultivars lines on cultivated lentils 

Country Cultivars/lines 

India 

 

 

 

 

Pakistan 

 

 

L442, L448, ILL179, ILL195, ILL201, LG169, LG170, LG171, LG172, LG173, 

LG174, LG176, LG209, LG217, LG218, LG219, LG221, LG223, LG225, LG231, 

LG232, LG236, HPL5, Piant 4, Pant L406 

ILL 358, ILL 4605, ILL 5588, ILL 5684, ILL6024, FLIP84-27L, FLIP84-43L, 

FLIP84-55L, FLIP84-85L, FLIP86-9L, FLIP86-12L, 78 S 26018, 78 S 26052, 

88518, 88527, 88547, Masoor-93 

ILL 857, ILL 2439, ILL 4605, ILL 5244, ILL 5588, ILL 5562, ILL 5590, ILL 

5593, ILL5684, ILL 5725 
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Syria 

 

Morocco 

Canada 

New Zealand 

Chile 

Ethiopia 

ILL 857, ILL 2439, ILL 4605, ILL 5244, ILL 5588, ILL 5562, ILL 5590, ILL 

5593, ILL 5684, ILL 5725 

ILL 5698, ILL 5700, ILL 5883, ILL 6212 

ILL 358, ILL 5588, ILL 5684, Laird 

ILL 5684, ILL 5588, ILL 5714, Rajah 

ILL 358, ILL 4605 

ILL 358, ILL 857 

   

Vetches 

 Studies in Bulgaria to analyze the stability 

of seed yield in vetch (Vicia sativa) cultivars, the 

formation, and variability of seed yield and its 

components (plant height, pod per plant, seed per 

plant, 1000 seed weight) are highly significantly 

affected by genotype, environment, and their 

interaction. As a result, Liya, Moldovskaya, and 

Obrazets 666 cultivars are suitable for inclusion in 

breeding programs and developing new lines with 

stable yields (Georgieva et al. 2015). Cakmakci et 

al. (2006) revealed the heritability of component 

yields in common vetch. Heritability estimates help 

determine the right strategy in breeding and are 

used to determine the level of relationship between 

relatives and predict the effectiveness of 

phenotypic selection. A study in Turkey by 

analyzing 150 accessions and two common vetch 

cultivars from various agro-ecological regions and 

countries revealed that seed yields from common 

vetch could be imported through bulk selection 

based on 1000-seed weight, number of podding 

nodes, harvest index, and number of days to 

flowering by choosing promising accessions 

(Cakmakci et al. 2006). While research in Serbia 

identified agronomic characteristics associated 

with grain yield and crude protein content in 

common vetch accessions from various geographic 

origins. Of the 14 accessions, VIC 006 produced 

the highest grain yield. Topaze produces the 

highest crude protein dry matter grain. Based on 

branching relationships, there are 4 clusters and 

two quite distinct accessions (Mikić et al. 2013). 

 

 

Lupins 

 The genus lupines consist of nearly 300 

species, four of which play an important role in 

agriculture: Lupinus albus L., L. angustifolius L., 

L. luteus L., and L. mutabilis L. (Gresta et al. 2017). 

Drought stress reduced grain yield by 79%. 

Recently, the breeding program on L. albus L. 

(white lupine) against drought stress by also testing 

21 landraces originating from the major historical 

cropping region, one variety, and two breeding 

lines. Early flowering is an important stress relief 

mechanism. Various out-yielded germplasm 

landraces that are better under stressful and 

favorable conditions (Annicchiarico et al. 2018). 

As for biotic stress, anthracnose fungal disease 

caused by Colletotrichum lupine since the mid-

1990s caused a rapid decline in white lupine 

cultivation in Germany and other countries in 

Central Europe. The testing of new breeding lines 

in five different locations in Germany showed 

improved resistance performance against C. lupine 

compared to reference varieties. Increased 

resistance is favorable for grain yield (Jacob et al. 

2017). In an effort to improve L. luteus L. (yellow 

lupine), Iqbal et al. (2019) developed the first 

linkage map and conducted a QTL analysis for 

yellow lupine under well-watered and water-deficit 

conditions. These genetic resources and QTL 

information offer significant potential for use in 

MAS in yellow lupine (Iqbal et al., 2019). For L. 

mutabilis L., currently, the species' molecular 

resources are still rare. The majority of molecular 

studies so far have focused on understanding 

phylogeny (Gulisano et al. 2019). Recently, the 

emergence of nextRADseq technology has 

explained the timing and domestication area of L. 

mutabilis L. (Atchison et al. 2016). A total of 118 

InDel polymorphisms and 113 SSR primers from 

L. luteus L. have been used successfully to 

characterize L. mutabilis L. genetically (Parra-

Gonzales et al. 2012; Osorio et al. 2018). A study 
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in Australia identified genotype x environment 

interaction in L. angustifolius (narrow leafed-

lupine) for phonological adaptation which was 

explored using the Agricultural Production System 

Simulator (APSIM). Simulation results show that 

narrow leafed-lupine yield is significantly affected 

by water availability and temperature. Therefore, 

narrow leafed-lupine breeding in Australia must 

focus on rainfall gradients and temperature regimes 

(Chen et al. 2016) 

 

Soybean 

 When viewed from its production, soybean 

is the most important food legume crop in the 

world. From 1990 to 2017 soybean yield increased 

by an average of 1.68% per year. During this period 

the harvested area more than doubled. In 1990 the 

harvested area of soybean was 57.2 million ha with 

a production of 108.5 million tons, in 2017 the 

harvested area was 123.6 million ha with 

production of 352.6 million tons worldwide 

(FAOSTAT 2019).  

Species (Glycine max [L.] Merr.) or 

cultivated soybean have been domesticated 

thousands of years ago is believed from wild 

soybean (Glycine soja) (Carter et al. 2004; 

Hymowitz 1970). It is estimated that there are more 

than 47,000 accessions of Glycine max among 

germplasm throughout the world. More than 1,000 

of them have been used for cultivar development 

programs (Carter et al. 2004). While the USDA 

Soybean Germplasm Collection has more than 

22,000 accessions of Glycine max (U.S. National 

Germplasm System, 2019). The genetic source is 

the result of previous development programs and is 

useful for expanding the genetic diversity needed 

to improve genetic gain in the future development 

of soybean cultivars. 

 QTL studies can provide functional 

genomics information so they can characterize 

allelic variations and how they affect the fitness 

and function of all organisms (Miles and Wayne 

2008). Updates to the QTL soybean collection can 

be accessed through SoyBase Integrating Genetics 

and Genomics to Advance Soybean Research 

(https://www.soybase.org/). The database is very 

complete as supporting material to improve 

soybean. Starting from soybean cultivation 

tutorials, genetic maps, genome browsers, genome 

sequences, mutants, to information on soybean 

activist communities. The database was developed 

by the USDA-Agricultural Research Service 

(ARS) SoyBase and Legume Clade Database 

group at the Iowa State University and funded by 

the USDA-ARS (Fig. 2).  

 

 
Figure 2. Display of the SoyBase Integrating Genetics and Genomics to Advance Soybean Research page 

(https://www.soybase.org/) 

 

 

https://www.soybase.org/
https://www.soybase.org/
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